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The problem of the optimal decoupling of mechanical systems equations is solved. Gyro- 
scopic and positional non-conservative forces are taken into account. Presence of the latter 
goes beyond the scope of compact groups theory. The way of the composition of symmetry 
groups corresponding to the found decoupling is considered. The method for solution of 
problem of hierarchic decoupling of the equations set is suggested 

 

 
1 The problem of decoupling 

We consider a problem of decoupling of the equations set B1ẍ + B2ẋ  + B3x = 0, where x Cn, 
Bi are complex (generally speaking) n by n matrices. It is necesary to find such transformation 

ˆ 

 [1] . . .   . . .  0 
. . .  [2] . . .  . . .   

Bi = HBiS = diag(B1i, B2 i,. . . , Bli) = ................................. , 

0 .................... [l] 

that  all    B̂i      coefficient  matrices  will  have  the  equal  partitioned-diagonal  forms,  or  prove  that 
such transformation does not exist. We want to have l blocks as maximum possible number [1,2]. 

The second problem is similar to the first, but the matrices will have the partitioned-triangular 
form: 

 

i =  
· [2] ////    //// 

.
 

· · · //// 

0 · · [l] 

We prove that if a B1 matrix is nonsingular, for the solution of the problems 1 and 2 it is necessary 
to form auxiliary matrices Ci = B1

−1Bi, i = 1, 3 and for them to solve similar problems, using 
only similarity transformations: 

C̃i  = R−1CiR. (1) 

 
2 Existing method 

There exists the method of commutative matrix (see A.K. Lopatin [6], E.D. Yakubovich [9], 
V.V. Udilov [8] and Bazilevich [2]). Let Λ(Ci) be a set of all matrices that are commutative 
with all matrices Ci . Let a Z matrix be a member of Λ(Ci) and have two (or more) different 

eigenvalues. Vectors of its canonical basis are columns of R transformation matrix of similarity. 
This method must be used at first to the parent matrices Ci , then to the blocks obtained 

consistently. We continue this process until receiving only undecoupling blocks. An application 

B̂ 
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of methods using a priori information about symmetry of the proper physical system is desirable 
at the first step. This carries out to get the maximal quantity of blocks. A further increase of 
quantity of blocks is impossible. The uniqueness theorem confirms that [2]. 

 

3 Finding a symmetry group 

After implementation of decoupling it is possible to find a symmetry group of the explored 
physical system. Formative group members will be the matrices Tµ = RLµR−1, where Lµ = 
diag(E1, E 2 , . . . ,  E µ , . . . ,  El), Ei are identity matrices. Their orders are equal to those of cor- 
responding matrices of the obtained subsystems. 

The members of obtained set form an Abelian group as LjLµ = LµLj and L2 = E. The 
group members are commutative with the Ci matrices. Reducing matrices Tµ to the irre- 
ducible representations corresponds to decoupling of matrices Ci . In other terms this process 
corresponds to the similarity transformation (1). 

Such group is not unique. Indeed, the given group is Abelian, while symmetry group of the 
physical system may be not Abelian. It is clear that the matrices of any symmetry group belong 
to the Λ(Ci). 

 
4 Hierarchic decoupling 

Reducing matrices to the partitioned-triangular form corresponds to “hierarchic” (vertical) de- 
coupling. Thus, first subsystem does not contain variables of another subsystems. Only variables 
of first and second subsystems are present in the following subsystem, etc. The number of such 
subsystems can be greater than at ordinary decoupling. 

Subsystems of smaller order made from the diagonal blocks of regenerate matrices are equiva- 
lent to the initial equations set from point of dynamic stability. Indeed, a set of eigenvalues of 
the initial equations set is equal to a union of sets of eigenvalues of subsystems made from the 
diagonal blocks. 

Let us prove that the number of auxiliary subsystems of only the nonsymmetrical coefficient 
matrices can be more than maximally possible number of independent subsystems to which the 
given equations set is reduced. Nonsymmetric coefficient matrices are used, for example, in the 
case of research of dynamic stability of the mechanical systems [5]. This is related to many 
phenomena: flutter, shimmy wheels of car or front undercarriage of airplane, creep caused by 
interaction of wheeled pair of railway vehicle with railing and so on. The asymmetry of matrix 
of position forces makes inapplicable many theorems of qualitative research of motion stability, 
and also does problems in application of methods of decoupling. 

Let φ(Ci) be the algebra generated by the   Ci  matrices.   In other terms,  this is a set 
closed with respect to addition of matrices, matrix multiplication and multiplying of matrices 
on numbers. The first step of the proposed method consists in construction of algebra φ(Ci). 
For this reason at first select linearly independent matrices among the parent matrices. We will 
designate them Wk (k = 1, r).  Further we calculate all possible products Zij = WiWj.  If all Zij 
are linear combinations of matrices Wk then the latter are basic set of φ(Ci). Otherwise we 
add the next matrix Zij to the set Wk and begin the procedure of verification of all products 
anew. Criterion of possibility of reducing matrices to the partitioned-triangular form (reducible 
algebra) is the following: algebra dimension is smaller than n2, where n is order of matrices. 

Further we use a set of the theorems by J.H.M. Wedderburn, E. Artin, E. Noether, and 
others. Following those theorems a reducible algebra may be semisimple or non-semisimple [7]. 
In the cases in point, the given matrices are not reducible to the partitioned-diagonal form (if 
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only were reducible – we would already have done this by the method of commutative matrix). 
Therefore the algebra is not semisimple. 

A non-semisimple algebra has a nontrivial radical ideal. There are computation formulas for 
its  finding  [4].   Coordinates  α  =  [α1, α2, . . . , αr]T  of  any  element  of  radical  ideal  in  the    Wk 

basic  set  satisfy  to  the  equation  Dα  =  0,  D  =    dij   ,  where  dij  =  Sp (WiWj),  Sp  is  the  trace 
of matrix. The intersection of kernels of all matrices of radical ideal is a nontrivial subspace. 
It is invariant with respect to the parent matrices. We get vectors of this base subspace and 
orthogonal complement to it and place these vectors as columns of S transformation matrix. 

Computational algorithms and computer programs on realization of developed method were 
made. Computations on hierarchic decoupling of equations of motion of railway vehicles and 
others systems were performed [3]. 

 
5 Example 

Let us consider the mechanical system consisting of two bodies (Fig. 1). Let the control device 
create a force P = x1, applied to the second body. There is an example of positional non- 

conservative force. Let m1 = m2 = 1, k = 1. 
 

 
Figure 1. 

 

Let us consider: q1 is a moving of center of the mass; q2 is a half of spring pressure size: 

q1 = (x1 + x2)/2, q2 = (x1 − x2)/2. 

The equations of motion have such form: 

2q̈1 + q1 + q2 = 0, 2q̈2 − q1 + 3q2 = 0. 

Coefficient matrices are as follows: 

B1 = 2E, B2 = 0, B3 = 

     
1 1 

 

. 

Therefore C1 = E, C2 = 0,  C3 = 0.5 · 
1  1   

.   We have to resolve the problem of 

decoupling of this system by similarity transformation. 

At first, we will make sure that it is impossible to reduce the given system to the partitioned- 
diagonal form. For this reason we will find a Z matrix commutative with the given matrices Ci 

(i = 1, 2, 3).  It has a form Z = 

       
α β 

, where α, β are arbitrary parameters. So far 
 

as the 
−β α + 2β 

Z matrix has no different eigenvalues, reducing parent matrices {Ci} to the partitioned- 
triangular form is impossible [2]. 

In order to find if it is possible to reduce matrices Ci to the partitioned-triangular form or 
not we will use the algorithm described above. 

We consider all possible products of CkCj matrices and will check whether the obtained 
matrices are the linear combination of parent matrices or not. So far as multiplication by 
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C1 = E does not change the matrices; it remains to consider the C2 product. We calculate 
    

0 1
 3 

 

C2 = 
−1   2 . We check whether this matrix is the linear combination of previous matrices: 

C2 = αC1 + βC3? This equality corresponds to the equations set: 

0 = α · 1 +  β · 0.5, 

1 = α · 0 +  β · 0.5, 

−1 = α · 0 − β · 0.5, 

2 = α · 1 +  β · 1.5. 

We obtained that α = −1, β = 2.  Consequently, matrix C3 

 
 
 
 
 
is linear combination of C1 

and C3 matrices. 
So all products belonged to the linear capsule of C1 and C3 matrices. Consequently, these 

matrices form a basic set of φ(Ci) algebra, generated by matrices Ci . Number r of basis 

elements equal to 2, that is r  < n2 22. This means that reducing to the triangular form is 
possible. 

We  make  a  D = {Sp (CjCk)} matrix.  All  products  CjCk  are  already  calculated.  We  get 

D = 

  
2   2  

  

. 

We make the system of Dy = 0 equations: 

2y1 + 2y2 = 0, 2y1 + 2y2 = 0. 

As a result we get: = 
1

 

−1 

 

. We calculate a G matrix: 

G = 1 ·

  
1  0 

  

− 1 · 1.5 ·

   
1 1  

  

= 0.5 ·

  
1   −1  

  

. 

0   1 −1   3 1 −1 

Gξ = 0 equations have such kind: 

ξ1 − ξ2 = 0, ξ1 − ξ2 = 0. 

We obtained that the basis in the set of solutions of this system consists of s1 =  

     
1

 

vector. This vector and e1 = 

   
1  

  

vector are linearly independent. Therefore R = 

     
1 1  

 

. 
 

Further 

R−1 = 
1 

·

  
1   −1  

  

,
 

1 

 
C̃   = R−1ER = E 

−1   1 

C̃3 = 

    
1 1  

  

· 0.5 · 

  
1    −1  

  

· 0.5 · 

  
1    −1  

  

= 

  
1    1  

  

. 

−1   1 1 3 1 1 0   1 

After transformations the initial system is led to the subsystems: 

1)   ÿ2 + y2 = 0, 2)   ÿ1 + y1 + y2 = 0. 

Note  that  G1 group  of  matrices  gk  = 

  
1    k  

 

,  k  ∈ N is  symmetry  group  of  matrices  {C̃i}. 

This group is not compact. Indeed, the subspace 
α

 
0 

  

(where α is any number) is an invariant 

subspace in relation to G1 group and has no direct object invariant with respect to G1 group. 

3 
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6 Extensions 

A developed method may be applied to equations of evolution of the automatic control systems 
and to the models of macroeconomics. 
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