Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://srd.pgasa.dp.ua:8080/xmlui/handle/123456789/11628
Назва: | Некоторые соображения о роли парадокса в научных исследованиях |
Інші назви: | Some thoughts on the role of paradox in research |
Автори: | Большаков, Владимир Иванович Bolshakov, Vladymyr Дубров, Юрий Исаевич Dubrov, Yurii |
Ключові слова: | парадокс системный подход абсурд искусственный интеллект artificial intelligence systems approach absurdity paradox |
Дата публікації: | кві-2014 |
Видавництво: | ДВНЗ «Придніпровська державна академія будівництва та архітектури» |
Бібліографічний опис: | Большаков В. И. Некоторые соображения о роли парадокса в научных исследованиях / В. И. Большаков, Ю. И. Дубров // Вісник Придніпровської державної академії будівництва та архітектури. – 2014 – № 4. – С. 4-10 |
Короткий огляд (реферат): | RU: Показано, что возникновение парадокса в научных исследованиях часто порождает абсолютно новые решения, часто ошибочно называемые абсурдом. Приведены примеры из области системного анализа. EN: It seems to us that the value of any scientific work is not only in the presentation of concrete results, but also to a large extent that it should stimulate further studies in the field of study in her knowledge. However, sometimes in many publications, that devoted to the description and study of special scientific fields, the basic ideas and research results are formalized to the extent that the study of these works, even for well-trained reader, often turns in their transcript. However, science is not only of the concepts, theories and their evidence. It inevitably involves a number of general concepts related to the choice of the subject of research and the formation of concepts needed to conduct these studies. At the same time, a philosophical question inevitably arises: what is the relation of that part of science, we are doing to the real world around us? In this regard, we are trying to answer this question, without claiming to be common, though, much of what we celebrate on this occasion, is not new, and similar ideas can be found in other authors. In my defense, we note that the almost simultaneous occurrence of similar thoughts in different authors, in no way connected with each other, under the current complexity of the world around us, is a known fact. As examples we can point to the discovery of analytic geometry, Descartes and Fermat, the discovery of calculus by Newton and G. V. Leibniz, the discovery of non-Euclidean geometry of N. I. Lobachevsky, J. Bolyai and K. F. Gauss, vector calculus opening H. Grassmann and W. R. Hamilton, etc. And these scientists, in their human qualities different, almost incompatible. Objects of study, general systems theory, in the majority, are objects with a large number of variables, strongly interconnected, part of which is randomly changed (or unpredictable) way. In this context, an adequate description of the tools and studies of such objects is the probability theory, which allows to measure quantitatively the degree of «credibility» (probability) of different events, compare them and numerically evaluate the probability of occurrence of an event, and predicts the probability outcomes of random events. |
URI (Уніфікований ідентифікатор ресурсу): | http://srd.pgasa.dp.ua:8080/xmlui/handle/123456789/11628 |
Інші ідентифікатори: | http://visnyk.pgasa.dp.ua/article/view/40339 |
Розташовується у зібраннях: | № 04 |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Bolshakov.pdf | 344,65 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.