Please use this identifier to cite or link to this item: http://srd.pgasa.dp.ua:8080/xmlui/handle/123456789/13042
Title: Convolutional neural networks for the crack diagnostics in concrete structures
Authors: Danishevskyy, Vladyslav
Gaidar, Anastasia
Keywords: convolutional neural networks
the crack diagnostics in concrete structures
Issue Date: Feb-2024
Publisher: Придніпровська державна академія будівництва та архітектури
Citation: Danishevskyy V. Convolutional neural networks for the crack diagnostics in concrete structures / V. Danishevskyy, A. Gaidar // Матеріали Міжнародної наук.-практ. конференції «Інноваційні технології забезпечення параметрів комфорту, енергоефективності і екологічності житлових будівель на основі смарт-технологій», (20−21 лютого 2024 р., м. Дніпро): зб. тез. - Дніпро: ПДАБА, 2024. – С. 17-20
Abstract: EN: Problem statement. Millions of dollars are spent annually in the world on technical diagnostics of buildings and structures. Natural disasters such as floods and earthquakes, along with numerous negative man-made impacts lead to serious damage to building structures. The problem of diagnostics of the buildings and structures became extremely urgent after the aggression of the russian federation in Ukraine, which led to large-scale damage and destruction of industrial projects, housing stock and infrastructure projects such as roads, bridges, tunnels, etc. An important and urgent problem of Civil Engineering is to automate the processes of diagnostics of buildings and structures and to develop new methods for identifying building defects in building structures that would save human resources and reduce the dependence of survey results on subjective factors.
URI: http://srd.pgasa.dp.ua:8080/xmlui/handle/123456789/13042
Appears in Collections:Наукові статті

Files in This Item:
File Description SizeFormat 
Danishevskyy1.pdf213,51 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.